If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+40x+12=0
a = 7; b = 40; c = +12;
Δ = b2-4ac
Δ = 402-4·7·12
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{79}}{2*7}=\frac{-40-4\sqrt{79}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{79}}{2*7}=\frac{-40+4\sqrt{79}}{14} $
| 0.4=3/g−0.9 | | X+34=60x | | (3x*2)^2=103 | | c−–3.43/3=3.02 | | (5x+14)∘+(3x+20)∘=90 | | 28=3.5v | | -14h=-14 | | x/2–16=–7 | | 2x2−5x−7=0 | | (6x+6)+(10x)+(78)=180 | | 8=4^x^2*2^5x | | x^2+2x+1=28 | | 10r+4=74 | | +4=7410r= | | 3/4=15/pp= | | 0=-6s | | 160=-40s | | 21-k+7=21 | | 2(36-2x)+6x=92 | | -2(-x=2) | | -x=4-4x-3x+6 | | 95=(x÷2)•19 | | 1−21 (4x+1)=9/4x-3x+1)−49 x−(−3x+1) | | 1/3r^2-4=0 | | 20=5/14x | | 14(x–8)=28 | | 4(2a+2)=8(2-3a) | | 423+37=n | | 2x*2-12x+26=10 | | 8x-20=5x+19 | | 12e-1=8e+15 | | 5t-4=55 |